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Abstract

In this paper, the almost-sure stability condition for a co-dimension two-bifurcation system on a three-
dimensional central manifold, which is parametrically excited by a real noise, is investigated. A model of
enhanced generality is developed by assuming the real noise as the first component of an output of a linear
filter system—a zero-mean stationary Gaussian diffusion vectoral process, which conforms to the detailed
balance condition. The strong mixing condition, which is the essential theoretic basis for the stochastic
averaging method, is removed in the present study. To solve the complicated problem encountered in this
work, the asymptotic analysis approach and the eigenfunction expansion of the solutions to the relevant
Fokker—Planck equations are employed in the construction of the asymptotic expansions of the invariant
measures and the maximal Lyapunov exponents for the relevant system.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the investigation of the almost-sure stability or the maximal Lyapunov exponent for a
non-linear stochastic system has emerged as one primary focus of research interests in the field of
random dynamical systems as well as stochastic bifurcation. This is mainly attributed to the fact
that Lyapunov exponent characterizes the exponential rate of change of the response of a random
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system, and therefore, the sample or the almost-sure stability of the stationary solution of a
random dynamical problem depends on the sign of the maximal Lyapunov exponent.

A general method for exact evaluation of the maximal Lyapunov exponent of a linear Ito
stochastic differential equation was first presented by Khasminskii [1]. This method was then
successfully employed by Kozin and Prodromou [2], Mitchell and Kozin [3], Nishioka [4], and
Ariaratnam and Xie [5] to a two-dimensional Ito system.

Among the researches reported to date, only a few results concerned the case of ergodic
and colored noise processes. In the work of Arnold et al. [6], and Arnold [7], a procedure
for asymptotic analysis was presented and employed to construct the asymptotic expansion
of the largest Lyapunov exponent of a two-dimensional system with a real noise excitation.
To keep the solution tractable, the infinitesimal generator associated with the noise process
was assumed to be a self-adjoint elliptic diffusion operator with an isolated simple zero
eigenvalue.

Utilizing the method of stochastic averaging, the asymptotic expansions for Lyapunov
exponents for two coupled oscillators with a real noise were obtained by Ariaratnam and Xie [8].
This method was extended by Namachchivaya and Talwar [9] to study the three- and four-
dimensional systems under small real noise excitations. Furthermore, the same system was also
examined by Namachchivaya and Van Roessel [10]. Instead of using the stochastic averaging
method, the perturbation approach proposed by Arnold was applied to construct the asymptotic
expansions for the maximal exponents.

For a Van der Pol-Duffing oscillator and a co-dimension two-bifurcation system which
possesses one zero eigenvalue and a pair of pure imaginary eigenvalues, that are excited
parametrically by a real noise with small intensity which is assumed to be the first component of
an output of a linear filter system and conforms to the detailed balance condition [11], Liu and
Liew [12,13] obtained the asymptotical expansions of the top Lyapunov exponents for the relevant
systems. In these works [12,13], a model of enhanced generality is considered, in which the strong
mixing condition which is the essential theoretic basis for the stochastic averaging method was
removed. To tackle the complexity encountered in the research process, the asymptotic analysis
approach purposed by Arnold et al. [6] and the spectrum representation of the Fokker—Planck
(FPK) operator of the linear filter system [11,14,15] are employed in the construction of the
asymptotic expansions of the stationary probability density functions and the top Lyapunov
exponents for the relevant systems.

This present study is a further extension of the research work in Ref. [13]. According to
Pardoux and Wihstutz [16], the asymptotic expression of the top Lyapunov exponent depends on
the form of matrix B, which is included in the noise excitation term. In this paper, a general form
of matrix B is considered. Furthermore, for a special case of matrix B that caused the complexity
of the singular points of phase diffusion process, we will investigate the phenomena that arise
from these singular points and discuss the findings thoroughly.

The present paper is organized as follows. In Section 2, we recall the approaches for
determining the eigenfunctions and the corresponding eigenvalues of the relevant FPK operator
and its adjoint. Section 3 details the formulation of the problem. In Sections 4 and 5, the
asymptotical analysis is applied to obtain the expansion of the stationary probabilistic density
function. The top Lyapunov exponents for two cases, in which the singularity of the diffusion
coefficient arises, are evaluated in Section 6. The conclusion is drawn in Section 7.
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2. Eigenfunctions and eigenvalues of FPK operator for a linear filter system

Consider a general linear filter system, which is governed by the following stochastic differential
system:

u(f) = Au(r) + W(2), (1)

where A = (aj),,,; a; are real or complex numbers. W(¢) is an n-dimensional zero-mean Gaussian
white noise with E(W(¢ + 1)W(7)) = Vi(z), V = (Vjj),xn 18 @ symmetric, non-negative defined
constant matrix, and u = (uy, ua, ...,un)T is a zero-mean stationary Gaussian diffusion process. In
this paper, the matrix A is assumed to have a complete set of eigenvalues oy, ..., «, along with the
corresponding eigenvectors ej, ...,e,, which means that o;#o; (i#/). Furthermore, each
eigenvalue ¢; is assumed to possess a negative real part, i.e., R(o;))<0 (i=1,2,...,n).

Based on these assumptions, one will find that the probability density function of u(¢) is

psu) = Nexp[-Lu'K;'u], N = (2n)"/*[detK,]'?, )

where N is the normalization constant, and K, = <u(z)u(t)T> is the covariance matrix. Let U =
(e1, e, ..., e,) be the relevant eigenmatrix of A, one has D = U 'AU = diag[u, o, ..., o).

For the Markov process u(?), the differential generator L¥* and the FPK operator L, are,
respectively, given by

1 o 0 1 o

Ly = — —laju] + = vj ———,
st 3 % B,

L¥ = ajuj— + = vy ——,
u v aui + 2 / au,@uj ! 614,‘

3)
where the repeated indices indicate usual summation. Eigenvalue problems corresponding to the
two operators arise as

Lap;(w) = 2 (w), Ly (u) = 27 (w). 4)

It can be verified that L, and L7 possess the same set of eigenvalues [14,15].
Under such a condition, the detailed balance condition [11] is equivalent to

P, 7 u,0)py(u) = pleu, T ew’, 0)ps(u'),  py(u) = py(ew), ()

where ¢ = diag(ey, &, ..., &), & = 1(¢; = —1) for an even (odd) variable ;. Corresponding to the
same eigenvalue A, *(u) and y(u) = py(u)y*(eu) are, respectively, the eigenfunctions of L¥ and of
L,. Thus, one can investigate only one eigenvalue problem in Eq. (4).

It has been shown by James and Scott [14] and Roy [15] that the solution to Eq. (4) can be
chosen as two sets of Hermite polynomials, and corresponding to the eigenvalue Ay = mjoq +
-+ + my,o,, the eigenfunction of L, is

Ym(ew) = Yoy (u) = (—1)" 9"po(u)

owl'...owy"

(6)

where m = (m,my, ...,my,); m=m +my+ -~ +m,, m; (i=1,2,...,n) are non-negative
integers. For m = 0, corresponding to the eigenvalue 4 =0, y,(u) is equal to the stationary
probability density function p,(u), i.e.,

Yo(u) = N exp[—Lu'K, 'u] = N exp[-1v'K, 'v] = N exp[— w'K,w], (7)
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where v=U"'u, w = Cv, C = [UTK; 1U] is a symmetric, positive defined matrix. K, = C'is the
covariance matrix of the stochastic process v = U~ 'u. When m = 1, then

V1 (ew), Yy (em), .., Y, ()] = =V, {exp[—5 W Kywl} = U™ ug(u), (8)

where Y, (w) (k=1,2,...,n) are the eigenfunctions corresponding to the eigenvalues o,
respectively.
The transition probability density of the process u(z) can be written as

o0

putiu)y= > cnexplinT¥m@ynm), t=0. ©)

By combining the initial condition lim,;_( p(u,7|u’,0) = 6(u —u’) and the bi-orthogonality
condition [15], each of the coefficients ¢, can be determined as

~1
= | [[wpmwiz)| (10)
From Eq. (9), one can easily obtain the covariance matrix
Ry(7) = / du / du'[u'up(u, 7 | u)p,(u)] = Z ConTml - €xp [AmT], (11)

where vector rp is defined as
to = [ dulug @] = [ dulup ) (12)

3. Formulation

Consider a typical deterministic co-dimension two-bifurcation system which is on a three-
dimensional central manifold and possesses one zero-eigenvalue and a pair of pure imaginary
eigenvalues [17]:

= r+ayrz + (@r + ayr’z) + O(rl*zl*),

i =z + et — 22 4 (ear’z 4+ e328) + O(rYz1Y),

0 = o+ O(Irf’IzP), (13)
where u; and p, are the unfolding parameters, and a;, ay,as, c1,¢2,¢3 and o are real constants.
This normalized form arises in the classic fluid dynamic stability study of Couette flow [17]. In the
vicinity of equilibrium point (r, z, @) = (0,0, wt), via the transformation of r = [x2 + »?]'/?, @ =

arctan[ y/x], the model of the linearization of the original system (13), which is subjected to a
stochastic parametric perturbation, is obtained as

X = Agx — &2A;x + &u; (1)BX, (14)
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where
0 w 0 op 0 0 byt by b3
Ap=|-o 0 0|, A;=1[0 6 0|, B=|by by bn|, (15)

and the parameters y;, 1, have been rescaled such that
[ = —&201, p, = —&*0,. (16)
uy(?) is the first component of the u(¢), which has been defined in Eq. (1).
The following spherical polar transformation from (x, x», x3) to (p, 0, ¢),
x; = RcosOsin¢p, x»=Rcosfcos¢p, x3=Rsinb,
p=InR, ¢@)=owt+ o),
T T
bc|-23]. docio02m, 17)
yields a set of equations of the arguments of p, 0, ¢ and the noise process u, which was defined in
Eq. (1), i.e.,

p=p, 0=0, ¢=a¢, ul)=Au)+W(), (18)
where
p, = =& py + eur(D)py,
0, = —&%0, + cuy (10,
¢, = o+ eu (D), (19)
and

Py =01 cos® 0 + 8, sin’ 0,

pr =3 (fr2 + f1) sin 20 + cos® 0 + fi sin* 0,

0, =1 (6, — 61)sin 20,

01 = L (fi2 — fr1) sin 20 + (f21 cos? 0 — f, sin® 0),

b1 = fo1 +tan 0 fyo,

Sr1 = 5lki + kacos2¢ + k3 sin 2], fro = biz sin ¢ + by; cos ¢,

Jo1 = %[k4 + k3cos2¢p — kasin2¢], fg2 = b1z cos ¢ — bz sin ¢,

fo1 =b3ising + by cos g, fo = b,

ki =by+bi, ky=bn—>by, ky=bp+by, ksy=>bi—by. (20)

Since the phase processes 0 and ¢ are independent of the variable p, these together with the
diffusion process, u(z), which is defined in Eq. (1), form a vector diffusion process (0(t), ¢(¢), u(z))
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on [—n/2,7/2] x [0,27] x R" of dimension (n + 2) with the following generator:
L¥ =LY +eLl* + gZL;",

0 0
Li=1L} — 0 LY = —0,— 21
+w8qb u1¢18¢+u11 5 260, (21)
and the adjoint operator,
L,=Ly+ely + &Ly,
0 0 0 0
Ly=—-o—+ Ly, Li=-u—0,—u—¢,, L,=—0,. 22
0 w6¢+ 1 ut 5501 u18¢¢1 2= 7502 (22)

4. Asymptotic analysis

Corresponding to the FPK operator L., the invariant probability density function p.(6, ¢, u)
satisfies the FPK equation

Lep = (Lo + ¢L1 + & Ly)py(0, ,u) = 0. (23)

In the present paper, u(z) is assumed to be an ergodic Markov process on R”, and then
according to the multiplicative ergodic theorem of Oseledec, the top Lyapunov exponent for
system (18) is

2n
o= oany = [ [ ) " a0 | 2.0.9.0p.0.6.0 du. 4

For the present work, the assumption ¢ << 1 holds and we do not need the exact solution p.(60, ¢, u)
of the FPK equation. According to Arnold et al. [6], a formal expansion of

(0, ¢, u) = po(0, dp,u) + &p1(0, p,u) + -+ + " pn (0, pu) + -+ (25)

can be constructed such that

L()p() = 0, (26)
Lop1 = —Lipo, (27)
Lopy = —Lip; — Lopo, ... (28)

and hence the top Lyapunov exponent for system (18) may possess an asymptotic expansion as
follows:

{pesPe) = <Pospoy +e[p1,po > + <pg.p1)]
+ &[<pppo> + <pr.p1Y + <{po.p2 D1+ - (29)

of which the proof of the validity is needed.
In order to show that Eq. (29) is correct, according to Arnold et al. [6], we construct an adjoint
expansion for

L¥F, =p, — (fo+efi + - +&fn)
+ eNTNLEFy 4 L3Fy ) + &N T2 (LAFy), (30)
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with
Fb(Ga ¢,u) = FO(Ga ¢,u) + 8I;‘I(O, d)’ u) + -+ 8NF'/V(Oa ¢5 u), (31)
where fy, f1, ..., fn are functions that do not depend on the variable 6 and ¢, but only on u(¢) e R",
which are chosen such that the sequence of the following problems obtained from Eq. (30),
LyFy = py — fo, LiFy=p, —fi — LFo,
L§F2 = P> —f2 — L;FO — LTFI:
LyFs = —f3 — L3Fy — LT F,

LiFy + LiFy_1 + L5Fy_> = —fy (32)

is solvable.

For the fixed N, we introduce p™ = pg + ep1 + &%pa + -+ + &Vpy, as the truncated density
function of p, and f™ = (fo +¢&fi + -+ + &Vfn). As e—0, it is easy to verify that the difference
between p, and p™ is of the order of ¢"*!, which is expressed as eV !(5,).

With the foregoing preparation, one can arrive at the following equation:

{PpDe) — {PpPe) N
= "L Fy + L3Fy1,pe) — {LYFy + L3Fy 1, p™)
+ (F, Lipy + Lopy-1y — <f™, 6,
— LpppNY — {pP2PN-1)}
— VLS FN,psy + {F. Lopn )
— (L3Fy,pV) = {pppndt, (33)
where
{PePe) N
= {po.poy +El{p1,poy + <po,P1)]
+ &[{papo> + {p1.p1)> + <posp2)]
+ o 4+ Vo pv—2d + <pron-1) + <{po.PN D] (34)

To furnish expression (33), the following relationship is employed:

Lp™ = N [Lopy_1 + Lipy] + V2 Lopy. (35)

In addition, in the present paper, p, = 0. According to Theorem 3.1 in Section 3 of Arnold et al.
[6], suppose N =0 is fixed, po, p1,p2, ...,pny and Fi, F5, ..., Fy are such that the inner products on
the right side of Eq. (33) are well defined, and

sup |LTFy + LiFy_1|<Ci< o0, sup |LFy|<Cr< 0. (36)
¢u ou

Then the asymptotic expansion (29) for the top Lyapunov exponent of system (18) is available.
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In Eq. (25), all the functions p.(6, ¢,u), po(6, p,u), ... are required to be 2n-periodic in variable
o, 1.e.,
p:(0, ¢, u) = py(0, ¢ + 27, u),
po(ea (:b’ ll) = PO(H: d) + 27—5’ ll),
p1(05¢>u):p1(0,¢+2n’u)7"' . (37)

The normalization condition of the probabilistic density function p.(60, ¢, u) then yields

2n n/2
/ dp [ do / dupo(0, byw) = 1,
0

—7n/2

2n n/2 27 n/2
/O do dH/dupl(H, ¢,u):/0 dé _n/zdﬂ/dupz(e, du)=0, ... . (38)

—n/2
In general, each equation with the form L, = ¢ must satisfy the following solvability condition,
1e.,
{q.4*> =0, Vq*eKerLj={q"|Ljq" =0}, (39)

where <-,-) means the general scalar product, which is defined in Eq. (24), and L§ is the adjoint
operator of Ly which is defined by

0
Li=ow 5 + L3, (40)

with L¥ being the adjoint operator of L,. Then via the scalar product <-,-», the following
solvability condition is arrived at:

2n n/2 2n /2
{q,q%> :/ do / dG/du q*q:/ do / d@/dupLZ’)‘q* =0, Vq*eKer(Lg). (41)
0 —n/2 0 —n/2

Since the operator Lf is the sum of the operators imposed separately on variables ¢ and u, then
each ¢* e Ker(L¥) admits a series expansion in terms of the eigenfunctions /: (u) of operator L,
1.e.,

0

FO.bw =D GO.ohW). (42)
From the definition of the space Ker(L), we know

0
[w o+ zm] =0, (43)

Since @ >0 and the real part of each eigenvalue except for 4y =0, to which the associated
eigenfunction y(u) = 1, is less than zero, it is apparent that only one non-zero periodic coefficient
exists in Eq. (42), namely

05(0, ) = ¢5(0). (44)
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It implies that each element in the space Ker(L) is an arbitrary integrable function of the variable
0; hence, for the present problem, the solvability condition (39) can be written as

/0 " dé / du ¢(0, ¢, u) = 0. (45)

5. Expansion for stationary probability density

To obtain the perturbation solution (25) of FPK equation (23), a study on the recurrence
equations (26)—(28) will be conducted in the subsequent context.

5.1. FPK equation of order &

For Eq. (26), we assume that the solution py(6, ¢,u) possess a series expansion in terms of
eigenfunctions ¥, (u) of L,, such that

po(0, ¢, )

o0

= > PO, W)

= py (0, p)ro(u) + Z PO, p)p(w) + Z PO, $)rg) + -+ . (46)
Then the coefficients pV(0, ¢) are, respectively, the solutions of
0
0) _ 4
o+ im0 =0 @

There exists only one non-zero periodic solution, p“’)(e, Q) = pgo)(G), which corresponds to the
eigenvalue 49 = 0. Employing the normalization condition (38), we found that the solution to
Eq. (26) takes the following expression:

Pol0. 6w = 5 F(O(w), @)

where F(0) is a function of 0 yet to be determined by the solvability condition for the equation of
order &°.

5.2. FPK equation of order ¢

Consider Eq. (27). Substitution of Eq. (48) into the right side of Eq. (27) yields

Lop1(0, ¢, u)
_whyW[, 2FO) | [0 39,
=G0 S 5 2 o)
- ulg;;(u)[Mo + M cos 2¢ + M, sin 2¢p + M3 cos ¢ + My sin ¢, (49)
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where
1 ki d .
M() = §<b33 — 7)@ [Sln 20F(9)],
1
M1 = —kg/ll, M2 = —k3/11, A1 :F(B)—l——%[sinMF(@)],
= —by; tg OF(0) + [(b32 cos? 6 — by sin’ O)F(0)],

= —b;3tg0F(0) —|— [(b31 cos® 0 — by sin’ 0)F(0))]. (50)

It is known that the function u;/(u) can be expressed as a linear combination of eigenfunctions
W), k=1,2,...,n} of order m =1 [15], such that

uno(u) =y (u). (51)
k=1

In fact, the coefficient y, is the first element of the vector rx/cx, which is defined in Section 2 for
the order m = 1.
Expanding p;(60, ¢, u) in terms of the eigenfunctions {y/,(u)} yields

p](@, (b ll)
= py (0, p)ro(u) + Z PO, o)y (w) + Z P (0. D) + - (52)

Substitution of Egs. (52) and (49) into Eq. (27) leads to the fact that p{!(0, ¢) are, respectively,
governed by the following equations:

[ w@+ zk] A0, )

_ {M{MO+M1 cos2¢ + Mysin2¢ + Mzcos ¢ + Mysinp}, m=>y . m =1, 53)
0, m=> " m#l,
corresponding to the eigenvalue 4y = 0, the solution is
Py (0. ¢) = “>(0> (54)

where p(l)(()) is a function yet to be determined, which satisfies the normalization condition, i.e.,

2n
/ p(0)do = 0. (55)
0

As we know, each pD(0,¢) (m=2) is a periodic function of the variable ¢ with period 2=
and p(0, ¢,u) satisfies the normalization condition (38), therefore, it is clear that for the
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condition m>=?2,

PO, ¢) =0, m=2. (56)

For the case of m =1 and /; = a;. By solving Eq. (53) directly, we can obtain the solution
functions as

1 1
P00, ¢) =28 — + G g M + 20M3] 003 29+ [ My — 20011 sin 26)
2 | o 2w)* +

#{[(ka3 + wMy] cos ¢+ [ox My — 0 M3] sin ¢} ;. (57)
w? +oF

Finally, by summarizing the foregoing results, we found that p;(0, ¢, u) takes the expression as
p1(0, p,u) = _,,0 0 (O (u) + Z PO, $) (w), (58)

where pol)((?) is a function to be determined by the solvability condition of order &’. There-
fore by evaluating the asymptotic expansion for the top Lyapunov exponent, we found that

(9) is not contributing to the expression of the top Lyapunov exponent. In addition, each
p?( (0, ¢) contains the function F(0), which should be determined by the solvability condition of
Eq. (28).

5.3. Solvability condition and FPK equation

To determine the function F(0) in Egs. (48) and (58), the solvability condition of Eq. (28) will be
investigated as follows. Since the solvability condition of Eq. (28) is

2n
- / do / du[Lipr + Lapo] = O, (59)
0

substitution of Eq. (58) into Eq. (59) yields
o N0k
—/du/ Lipidg =1L+ K1Y, (60)
0 k=1

where

- / dufung(w)] = / dufupy(w)] =

(61)

s

0
1§">—/du[u1¢k<u>1—ék, Ii")—g[ elp(“ } k=12, ..,
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Then via computation, we know
2n
—/ dll/Llpl d¢
ﬁl [ [sm (20)F] — a0 [sin(49)F ]
- —ﬁ — [sin(20) +1d—2 in®(20)F] — 1d (40)F
e [sm F] 3407 [sin | 140 [sin ]

— 3 [s1r1(20)F ]

8 40
1 d? 5
- %R [(rc cos™(20) — 2k cos(20) + k3)F]
B 116 do [(x1 sin(40) — 24 sin(20) + 4xcs tan(0)) F1, 62)

where

B = Su,(0)bs3 — k1T,
ﬁz S Qo)lkz + k3],
= @, (0)[~b13b32 + ba3b31],
k1 = [(b13 + b31) + (b2s + 032)°1Su, (),
K2 = (b5 — b3)) + (b33 — b3,)1Su, (),
K3 = [(b13 — b31)* + (b3 — b32)*1Su (),
K4 = [(b13 + D31)(2b13 — b31) + (b3 + b32)(2b23 — b32)]Sy, (),
Ks = [b; + 033184 (0). (63)

For the stationary, stochastic vector process u(?), via the definition of the spectral density function
[11], we can obtain the explicit expression of the spectral density function of u;(z) [15], i.e

Sy () =2 / R (v) cos(wr) dt = — Z T
Uy - o u - - ViSk O‘i n 602’
+ oo 1 2w
P, =2 R,(7) sin dr = — —_— 64
@=2 [ R@sinde= -3 né 57 (64

Evaluation of the second term of the left side of Eq. (51) leads to

2n 27 . .
_ / dé / du[Lapo] = — / do / [ O;u)a[ﬁaz:)]} 3y 2 52d[sn(11§0F]‘ (65)
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Finally, by summarizing the results of Egs. (62) and (65), we find that the solvability condition
(51) is equivalent to the following standard FPK equation:
1d*

d
54 P OF O]~ GIOFO)=0. 0e[-3.3]. (6)

)
in which the relevant diffusion coefficient and drift coefficient are, respectively,

a*(0) = (4B, + 1 B,) sin® 20 + 2x; cos® 20 — 4k, cos 20 + 2k,

w(O0) ={[2B, + 3 B>l — K1 }sin 40
+ {8(61 — 02) + 2K4 — by — 61 }sin 20 — 4xcs tan 0. (67)

In order to make the problem tractable, we assume that
b31 = b1z, by = b, (68)

from which we can obtain that
Ko =1 = k3 =0,
K1 = 4Kks, K4 = 2Ks. (69)

Eq. (67) can then be changed to
a*(0) = (4B, + 1 B,) sin® 20 + 8xs cos?20),

1(0) = {[2B + 4 o] — 4ues}sin 40
+ {8(01 — 92) + 4d1cs — B, }sin 20 — 4ics tan 6. (70)

In view of FPK Eq. (66), the process of 0(¢) can be treated as a diffusion process on interval
[—7/2,7/2] with the relevant drift parameter () and the diffusion parameter ¢2(6), respectively.
In order to determine the solution for Eq. (66), the diffusion behaviors of such a process at the
boundaries of # = +7/2 and other singular points within [—7/2, /2] should be investigated.

The details of the definition and classification of singular points for one-dimensional diffusion
processes can be found in Ref. [18], from which, we know that the first kind of singular points is
the one at which ¢%(0) vanishes, and the second kind is that at which u(0) goes to infinity. With
these definitions, we can conclude that on the interval [—n/2,7/2], 6 = +n/2 are the singular
points of the second kind.

For the singular boundary x;, (x;, x, represent the left and right boundaries, respectively) of the
second kind, the diffusion exponent oy, the drift exponent ff; and the character number ¢, are
introduced [18]:

0_2(x) = O(|x - xs|7%)a O 20, X — Xg,
wx) = O(x — x,[ %), B,=0, x-x,
20(x)[x — xp o 2u(0)x, — X

¢ = lim ¢ = — lim
! X} a2(x) o XX a2(x)

(71)
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On [—7n/2,7/2], we consider only the situation of 6 = /2. For the case of 6 = —n/2, the result is
similar. While 0 —»n/2, we obtain
sin 0 sin 0 1

tan =050~ sinl(e/2) — 0 (/2 — 0] (72)
Then Eq. (71) leads to
=0, f,=1,
_ o 2u)(r/2) - 01" —8issin[(n/2)][(n/2) — 0]
= OBTI[I}/z a2(0) - 8ks cos? m cos[(/2)] =1 (73)

which are, respectively, the diffusion, drift exponents and character value at 0 = /2. After
checking out these results with the terms in Lin and Cai [18, Table 3], which gives a detailed
classification of the singular boundaries of the second kind, we know that /2 is an entrance of

[-7/2,7/2] and the result is the same as § = —n/2, i.e., 0 = —n/2 is another entrance.
For the diffusion process 0, its scale and speed densities are defined, respectively, as [19]
1
5(0) = exp[-E(0)], m(0) = OO
EO) = [ Lu0)o 010 (74)
and in addition, the relevant scale and speed measures are
0 0

S(0) = / s(x)dx, M(@0) = / m(x) dx. (75)
For Eq. (66), its solution can be represented as

F(0) = mOIC1S©) + €} 0e|-2.7], (76)

where C; and C are constants, which will be determined by the normality and boundary
conditions.
For the case of 4;# A, and A, > A,, we know

E@6) = EM + E® + E(3),
EW =11n[1 — (1 — 1) cos® 20],

B 1
ED = _22 arctanh[v/1 — 7| cos 20],

Al 1= T
E® =Incos — L[l — (1 — 1) cos? 20] — 1 \/1 — 7 arctanh[y/1 — 1, cos 20], (77)

where
Ay = 4B, +%,32» Ay = 8k,
By =2, +1B, —dxs, By=8[0; — 0] +4is — B, By = —4xs,

A
0<t :A—2<1. (78)
1
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And for another case 4; <A, (t; > 1), we obtain
EW =11n[1 + (1 — 1) cos® 20],

B 1
E® = _22____~ _ arctan[\/z 1 cos?20
-0 ﬁ [V — !

E® = In|cos 0] — Z In[1 + (7; — 1) cos® 20] + Z 11 — 1 arctan[+/7; — 1 cos 20)]. (79)
These expressions lead to

[1 — /1 — 1) cos20]1/2m=G/H

1
—cos 0 T1<1,

A1 1 4 /T =1 cos 20]1/2m+G/47

m(0) = (80)
Lc gexp —n, arctan[y/1; — 1 cos 20]] o>
A, [1+(t; — D)cos? 2074~ oo
where
BitB
Al /—1 — Tla 1 H
m = Bl +BZ (81)
—— 7 >1
A1 T — 1

Since the two boundaries are both entrances, we know that in Eq. (76), C; =0, and C can be
determined by the condition f , F(0)d0 = 1. Thus, the solution to Eq. (66), the invariant
measure, can be expressed as

[1 — /T =1 cos 20]1/Pm=G/9

—CoS , T<l,
A 1 /1 — 2911/2m+G/4)
FO) = C 1 [ + 71 cos 20] (82)
Lco 0 exp[—n, arctan[y/1; — 1 cos 29]]’ _—

A [1+4 () — 1)cos? 20]3/¥

5.4. Two special cases

From Eq. (82), we know that it is impossible to obtain the analytical results for the maximal
Lyapunov exponent. Furthermore, according to Pardoux and Wihstutz [16], the expressions of
top Lyapunov exponents depend on the forms of the matrix B, therefore in this paper, two special
cases for the coefficient matrix B in Eq. (15) are considered, i.c.,

Case 1. A1 = A, = A, which imply that

48, ()[bi3 + b33] =28, (0)[2b33 — biy — byo]’
+ S, Q)[(ha — bi1)* + (b12 4 ba)*]. (83)
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For the case of white noise excitation along with the facts that b33 = by, = by, by = by», of which
the coefficient matrix B in Eq. (15) is of the following form:

by by bis
B= (b bu by|, (84)
by by bn
the condition expression (83) is equivalent to
biy = 4[bi; + b3 (85)
Case 1I: b3z = byy = by, by = —by», from which we deduce that
by b bis
B=|-bn bu byu|, B=p=0. (86)
bis by bu

In the subsequent procedure, for each case, we will investigate the stationary solution to FPK
equation (66).

For the first case which is under the condition that ¢%(0) = 4, B; = 0 and 2B; = —A, we can
obtain

2
E(0) = B2 w20 + Injcos 0], Oe [_ T E] ’
A
5(0) = |sec Olexp[—a sin® 0],

m(0) = % Icos Oexplo: sin” 0],
2By  2() — 02) B>
=22 20 +(L—%5. (87)

In order to make the problem tractable, we divide the interval [—n/2,7/2] into two subsets as
[-7/2,0) and (0,7/2]. Since the solution problem on [—7/2,0] is the same as the situation on
[0, /2], we will only investigate the solution problem on [0, 7/2]. On both [—7/2,0) and (0, 7/2],
0 =0 is not a singular point. To investigate the diffusion behavior at § = 0, we employ the
concepts of the scale and speed densities. As

s(0) = sec @ exp[—asin® 0], Oe {O,g , (88)

on (0,7/2] and in the neighborhood of 6 = 0, for the two cases of o > 0 and <0, respectively,
e *secO<s(0)<secH, o>0,
e *secO=s(0)=secH, a<O. (89)

Then for the scale measure S(0, 0], the following two inequalities are tenable:

0 0
— oo</ {[e”*]sec x} dx<S(0,6]</ secxdx< + oo, a>0,
0 0

0 0
— </ sec x dx < S(0, H]S/ {[e™*Jsec x} dx< + o0, a<0. (90)
0 0
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For the speed measure M(0, 6], via the definition expression (75), we obtain

sin 0
M(0,0] = / %{exp[ocxz]} dx = %Erﬁ[sin 0], o>0,
0

sin 0
M(0,0] = /0 % {exp[ax’]} dx = %Erf[sin 0], «<0, 1)

where Erfi and Erf are the error functions.

Egs. (90) and (91) tell us that the two measures are both finite, thus according to the definition
of a reflecting boundary [19], we know that 8 = 0 is a reflecting boundary for the two intervals,
which is shown in Fig. 1. With this result, we can conclude that the diffusion process evolves on
[-7/2,0) and (0, /2] separately, and the solution to Eq. (66) will be analyzed on the two intervals,
respectively.

To system (66) restricted on (0,7/2], the solution is

2/

e — 1 2
\/EErfi[\/&] cosOexplasin” 0], o>0,
F(0) = e he [o,

— =V " cosfexp[xsin®0], «<0,

—a
7 Erfly/=3)

We can then verify easily that on [—7/2,0), the stationary probability density is of the same
expression.
For the second case, assumption (86) leads to

o%(0) = 8ks cos® 26,
w() = —4kssin40 + {8(0; — 02) + 4xs}sin 20 — 4ics tan 0. (93)

g] . 92)

Since at 0 = +7/4, 6*(0) =0, 0 = +n/4 are singular points of the first kind, and at points
0= +mn/2, (@) =—o0, so 0 = +n/2 are singular points of the second kind. Because of the
different diffusion behaviors of the singular points, the interval [—7/2, /2] should be divided into

m
Reflecting 8=
Boundary
(0] =0 Entrance
Entrance o) - =0
. Reflecting
6= ) Boundary
@ (b)

Fig. 1. Boundary diffusion behaviors of the intervals [—=r/2,0] and [0, 7/2].
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three sub-intervals, i.e., [-7n/2,—n/4], [-n/4,n/4] and [n/4,7/2], of which the solutions to

Eq. (66) should be investigated. First, we investigate the diffusion behaviors of the singular points.
On [—n/2, —n/4], according to the definition expressions in Eq. (71), we know that at the left

boundary 6 = —x/2, the diffusion and the drift exponents and the character value are

wu=0, B, =1,

2u(0)[0 + (z/2)])'° _ —2x4xstan 0[0 + (1/2)] _

1 4
0>—nt/2 a2(0) 8K ©4)

&=

which, in view of Lin and Cai [18, Table 3], leads to the fact that 6 = —=/2 is an entrance for
interval [—7/2, —7/4].
Since at —n/4,

—8(01 — 02)<0, 1>,

P (Olg——rja =0,  1(O)lg—_rjs = { —8(61 —52) >0, &<,
0, 512521
0, 01#02,
r =2, F 95
8 p {1, 51 = by, ©3)

The diffusion behaviors at such a boundary should be discussed for three cases. According to
Table 2 in Lin and Cai [18], which gives the classifications of singular boundaries of the first kind,
we know that if ; > d,, —n/4 is an entrance, and if §; <d,, —n/4 is an exit instead. To determine
the boundary type for the case of 6, = J,, the character value, which is defined as

—2uO0 + (/2" 1

a=- 9_>hfr?+ /2 a2(0) ) (%6)

is needed. By contrasting Eq. (96) with the relevant terms in Table 2 of Lin and Cai [18], we found
that —n/4 is an attractively natural boundary (ANB). These results are shown in Fig. 2.

Let us consider the interval [—n/4,7/4]. It is easy for us to check the following facts:

If 6, > 0,, —m/4 is an exit and /4 is an entrance; if ; <J», instead, —n/4 is an entrance and 7 /4
is an exit. For the case of §; = d,, —n/4 and ©/4 are both ANB. The results are depicted in Fig. 3.

. Entrance

N
N

g=-"
4
Entrance Entrance Entrance

@ (b (©
Fig. 2. Boundary diffusion behavior of interval [—7/2, —n/4] for the cases of (a) d; > 2, (b) §; <d2, () d; = 2.
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T T
9=" == ==
4 .4 .4
7 e 7
// . e
, Entrance A, EXit L% ANB
e // e
4 // ,/
/, . ’
4 // ,/
/, yd ’
,
/, // ,/
O<C Oy (Ohy
N \\ \\
\\ \\ Y
N \\ N
N \\ \\
\\ AN N
Y N Y
N . AN N
< Exit \. Entrance < ANB
A N
- . .
9=-= 9=-= g=-=
4 4 4

@ (b) (©
Fig. 3. Boundary diffusion behavior of interval [—7/4, /4] for the cases of (a) 1 > d, (b) §; <32, (¢c) §; = 0.

Entrance Entrance Entrance

@ (b) ©
Fig. 4. Boundary diffusion behavior of interval [z/4,n/2] for the cases of (a) d; > d, (b) d; <2, (¢) 01 = Js.

On [r/4,n/2], via the same procedure, we know:

If 6, > 05, m/4 is an entrance, if 01 <J,, n/4 is an exit and if §; = J,, /4 is an ANB. The other
boundary n/2 is always an entrance on such an interval. The situations are summarized in Fig. 4.

A stationary solution to a FPK equation does not exist [18], if each of the two boundaries is
either an exit, or attractively natural, or strictly natural, from which we found that under the
conditions of J; >d, and O, = d,, the invariant measures do not exist on [—n/4,7/4] and
[—7/2,7/2], respectively, so in this study, the stationary solution to Eq. (66) will be able to be
investigated only under the condition of d; <9,.

Next, upon each sub-interval, we determine the stationary solution to Eq. (66). First we
consider interval [—7/2, —7/4]. Since = —7/2 is an entrance and meanwhile 6 = —n /4 is an exit,
we know that on [—7/2, —7/4], the solution to Eq. (66) is a Direc Delta function which is of the
following form [18]:

T Y T
F(0) = c5(0+4), ee[ i 4}, 97)
where C is an integral constant which can be determined by the normalization condition of F(0)
on the whole interval [—n/2,7/2].
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Similarly on interval [n/4, /2], the invariant measure is also a Direc Delta function, i.e.,

F(0) = ca(e— %) 0e Eg}

On interval [—n/4, /4], since the two boundaries are both entrances, the invariant measure is

(98)

F(0) = Cm(0) = 8_2 [sec 201/% cos 0 exp [51 K_s 02 sec 20} , be [— %, g] . (99)

6. Asymptotic expansion for top Lyapunov exponent

Under the assumption that the FPK operator L, defined by Eq. (22) is an ergodic operator,
therefore, on the domain [0,27] x [-7/2,7/2] x R", the maximal Lyapunov exponent for the
stochastic bifurcation system (18) is given as

2n n/2

fo=papy = [ o [ a0 [ (100)
0 —n/2

where p.(0, ¢, u) is the stationary probability density which admits the asymptotic expansion (25),

and p, is defined in Eq. (19). According to the discussion in Section 3, it can be shown easily that

the asymptotic expansion of the top Lyapunov exponent

{pepoy = emp,poy +&[=<prpo> + {pr.p1 D]+ (101)
is reasonable. For the stochastic vector process u(?), since {u(z)> = 0, then
1 2n /2
Cap 0,610 = [wowin [ a6 [ 00,6700 =0 (102)

Hence, as a result, the asymptotic expansion of the relevant maximal Lyapunov exponent for
system (18) arises as

Jo = &=L paspoy + urpy,p1 ]+ o). (103)

In calculating the asymptotic expansion for the top Lyapunov exponent, the computations of
: : (1 _
the solution functions as p; (0, ¢), (k =1, ...,n) are needed.

6.1. Case I

For the first case, based on the results of Eq. (92), we obtain
0, ¢) = 2010 A0 + 10 + 110 13, (104)
where
Aoy = i[F((?) sin 20]
" do
= cos O[—1 4 3 cos 20 + a sin 20] exp[a(sin 6)?],
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A = [cos 01°[3 + o — o cos 20] exp[a(sin 0)7],
Ay = 2sin O[cos O] [—3 + o cos 260] exp[a(sin 0)*],

1 k
(k) _ _ M
o™ =5 k<b33 2)

1
'Y = - {[oky + 2wks3] cos 2¢ + [oxks — 2wka] sin 26},
Qw)* + o
1
m = o {[ockb23 + wbi3] cos ¢ + [oxb13 — wbys]sin ¢}.

Substitution of Egs. (104) and (105) into Eq. (103) yields
1 p B
urpy,p1y :—<K5+ 42> 2Jo< Zz)

J:
(poupo) = 81+ 702 — b,
0

1 1
Jo = /0 [exp(ex?)]dx, Jo = /o [x? exp(ox?)] dx.

Then the asymptotic expansion of the top Lyapunov exponent is given as

ﬁ2 Ks Iexpla ]f )
, 51+ > 4 £2 4\/_ Eofil/a] +o(e%), a>0,
Je =
ﬁz Ks CXp[OC]v )
51+ > 2 +4fErf[\/_ +o(¢%), a<0.

From Eq. (87), we found that condition & = 0 means that
01 = 02 + [ Su Q)3 + k3] — 3 Su (@)Dt + b1,

from which it is easy for us to obtain the inequalities in Eq. (107).
6.2. Case 2

For the second case, since
My= M, = M, =0,

M3 = b23/1, M4 = b13/1, A= —tg QF(Q) + % [COS 29F(0)],

1 .
P00, ) =2 — L[ My + MyJcos b + [ M — oMs] sin ¢}
T W —|— Olk

%k
2n w? + o

1 .
———{[oabas + wbi3] cos ¢ + [okbiz — wbys] sin P} A.

105

(105)

(106)

(107)

(108)

(109)



106 X.B. Liu, K M. Liew | Journal of Sound and Vibration 272 (2004) 85-107
The terms in expression (103) can be evaluated as
1 1 I I
= pppo) = =501+ 82) 4502 = 00— (02— 01
2 2 Iy
1 1 Iz Il 1 Il
=- 2 —K5(2—=— —| — = 222 1 11
Cuppp1) gl K5C+4K5[ 7 [o] K C[ I [0] (110)

where

+ o0 \/E
Iy = / exp[—rx?]dx = Y=,
. NG

+o ]
I :/OC T x ———exp[— kx?dx = ne"(1 — erf(\/x)),

+ o0 1 2 5
L= /_L [m} exp[—kx~] dx,

K +%ne"’(1 —2Kk)(1 — erf(\/E)), (111)
_ Iy
cl'=|24+——|,
8\/§K5e"‘]
_ 0y — 01 0.
Ks

Then for the second case, the analytical expression of the top Lyapunov exponent of system (18) is
obtained as

R K
e = 32{—51 - 75 +20 /1(22’} + o(?),

, 1 1
) = 5{ [(52 —01) — §K5] R + Kst},

1
25 = {(52 —3)(Ri — 1)2ws + 5 ws(Ry - 2Rz)}, (112)
where

= /m/ie (1 = erf (\/x0),
R2=——K— ffe [1 = 26][1 — erf (/). (113)

7. Conclusion

In this paper, an asymptotic expansion for the maximal Lyapunov exponent of a co-dimension
two-bifurcation system driven by a small-intensity real noise process has been constructed. To
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consider a rather general model, the real noise was assumed to be an output of a linear filter
system, viz., a zero-mean stationary Gaussian diffusion process, which satisfies detailed balance
condition, and thus stochastic averaging method is not available. The method used in the present
study involves the use of (1) the asymptotic analysis given by Arnold et al. [6], and (2) the
expansion for the eigenvalue spectrum of Fokker—Planck operator.

In addition, two special cases, one of which where the singularity of the diffusion coefficient
arises, are considered and the top Lyapunov exponents are evaluated.
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